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Table 3. Evaluation of the ~V and ~(c/a) contributions to the 
dCuidP ,from simultaneous solutions of equation (9) 

(ac /j/ac/alv 
- (a In c u/a In V)cla 1012 dynes/em' 

3·18 
2-81 
0·912 
1·233 
4·741 
6·284 

- 10·59 
5·034 

- 6·506 
- 2·432 
-2-486 
- 0,753 

frequencies of the normal modes of crystal 
lattice vibrations are assumed to be dependent 
only on the volume of the crystal via the mode 
Grtineisen gamma, 

y 1' (q) = 
dlnwp(q) 

din V 
(10) 

where q is the direction in which the wave 
mode propagates in the crystal , p is the polari­
zation direction and wp(q) is the wave mode 
frequency . Since the yP(q) vary for different 
modes , the Grtineisen y that is derived from 
the thermal expansion coefficient at a given 
temperature, 

(I 1) 

(where C v is the specific heat at constant 
volume) is an average of the individual mode 
yP(q) weighted according to its degree of 
excitation at the particular temperature. It 
has been shown [17, 2] that reasonably good 
agreement with equation (11) can be obtained 
by calculating yP(q) from the hydrostatic 
pressure derivatives of the stiffness moduli, 
which we shall denote in this discussion as 
Cp(q). For hexagonal symmetry this approach 
gives [2] 

{3J.. (311 1 yP(q) = - (1- n2 ) + - n2 --

{3 v {3 v 2 

x (l_~(a In Cp(q»)) (12) 
{3 v ap T 

(aCjjlap) cla (ac/jlaPlv 
Ti Zr Ti Zr 

4·81 4·79 0·201 -0·86 
4·98 5·08 - 0·096 0·409 
0·397 0·306 0· 124 - 0 '528 
0·404 0·457 0·046 - 0,197 
4·07 3·60 0·047 -0'202 
4·04 4·31 0·014 - 0'061 

where n is the cosine of the angle between the 
q direction and the c axis. Through the use of 
Gerlich's computer program [2] we have 
evaluated the yP(q) in Ti and Zr for each of the 
three normal modes at 300 different directions 
in the crystal and obtained weighted average 
;:;it from the 4°K Cp(q) and 298°K values of 
dCp(q)/dP and 'YH from the simple average of 
the yP(q) over the 300 directions. Gerlich [2] 
has shown that for Mg and Cd the 'YL and 'YH 
values are in good agreement with the thermal 
expansion [18] YL(CXv) and YH(CXV), as shown in 
Table 4. We have previously reported that 
this is not the case for Zr[l] , where YH is 
about i of YH(CX V) (Table 4)[19,20]. For Ti 
this deviation is not as severe as for Zr but 
it is still quite large, as shown in Table 4 where 
YH is about 70 per cent of YH(CX V) when the 
measured dCiq)/dP are used to evaluate 
the yP(q). It should be noted here that the 
measured, adiabatic, stiffness moduli and 
pressure derivatives are converted to iso­
thermal values before calculating y P(q) . At 
the present time the YL(CX V) for Ti and Zr are 

Table 4. Comparison of 'Y calculated from 
measured dC1J/dP with y(cxv) obtained from 

thermal expansion data 

Refs. to 
1L I'L(a V) 1H I'H(a V) I'(a v) 

Mg 1·45 1·40 1·52 1·50 18 
Cd 2·16 2·3 2·06 2·3 18 
Zr 0·018 0'2±0'4 0·37 1·01 19 , 20 
Ti 0·50 1·0±0·5 0·77 1·10 19, 5 
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are each known only from measurements [19] 
on two polycrystalline samples where the 
values differ considerably, as noted in the 
uncertainty given in Table 4. We are therefore 
in no position to even estimate the validity of 
the calculated "iL for these two metals. 

To explain the large difference between 
YH and 'Y~av) for Zr it was proposed that the 
dependence of the frequencies, wp(q), on the 
change in cia ratio must be separated from 
the effect of volume change so as to consider 
the differences in d(cla)/dV under hydrostatic 
pressure and thermal expansion: 

p _ (a In wp(q») d In (cia) 
'Y (q) - (yP(q»cla- 0 In (cia) v d In V ' 

(13) 
for thermal expansion 

d In (cia) = (a In (Cia») = all- al. (14a) 
d In V 0 In V p a v 

whereas for hydrostatic pressure 

din (cia) =(aln(cla») =f3I1- f3l. (14b) 
d In Vain V T f3 v · 

The measured values for equations (l4a and 
14b) for Mg, Cd, Zr, and Ti are listed in 
Table 5. The anisotropy in compressibility can 
be evaluated from the elastic moduli [21, 22, 
3] within 2 or 3 per cent and are therefore 
quite reproducible. The a ll and al. values are 
however very sensitive to small errors in the 

Table 5. Differences between axial 
linear compressibilities and thermal 
expansion coefficients for Mg, Cd, Zr 

andTi 

1 1 
Refs. /3v (/311- i3l. ) -(all-a) 

a v l. 

Mg 0·013 0·019 [21 , 18] 
Cd 0·660 0·361 [22, 18] 
Zr -0·049 0·136 [3,20) 

0·045 [23] 
Ti 0·013 -0-144 [3 ,5] 

0·059 [24] 

temperature dependence of expansivity data 
and can therefore vary considerably with the 
methods of measurement and data treatment. 
Table 5 lists two different values for (all- a.t> 
in Zr and in Ti. The a values taken from 
Refs. [20] and [5] are instantaneous tempera­
ture derivatives of the lattice constants at 
300oK, whereas the other values [23 , 24] 
correspond to the mean slope over wider 
ranges of temperature. For Mg we assume 
that the excellent agreement between 1H and 
'YH(aV) can be ascribed to the very small 
difference between equations (14a and 14b) 
whereas for Cd we surmise that the (0 Inwp(q)1 
a In (cla»v terms are very small. 

To estimate the relative contributions ofthe 
volume and cia changes to the wp(q) ofTi and 
Zr we use the data of Table 3, obtained from 
simultaneous solutions of equation (9). The 
first term on the right of equation (13), 
(yP(q) )cla, is related to (a In cula In V)cla as 
follows: 

1 (0 In Cu) 
2 a In V Cia 

(15) 

where f3q is the linear compressibility in the 
q direction. The second term of equation (13) 
is derived from, 

(a In wp(q») _ cia ( oCjj ) 

o In (cIa) v - 2Cjj o(Cla) v· (16) 

The calculated values for equation (13) 
are given in Table 6. For Ti the tl(c/a) contri­
bution has a major effect only for the C44 

mode, whereas for Zr the tl(c/a) effect is very 
large for the C44 mode and has a major role 
in reducing the yP(q) for the Cll and C66 

modes. 
Having arrived at a plausible explanation 

for the difference between 1H for Ti and Zr 
we can now test the proposal that the differ­
ences between 1H and 'Y~av) are caused by the 


